基于BP-DEKF算法的电池状态参量协同估算方法

新能源电池,重点成果

基于BP-DEKF算法的电池状态参量协同估算方法

本发明公开了一种基于BP‑DEKF算法的电池状态参量协同估算方法,属于新能源电池测控领域,基于二阶RC等效电路模型建立电池关于SOC和容量的状态方程;采用双扩展卡尔曼滤波方法,构建EKF1和EKF2实现对电池的SOC与SOH的协同估计;并以安时积分为桥梁,将SOC和SOH的估计值关联形成闭环,两者相互校正反馈实现协同估计,最后引入BP神经网络进行修正。本方法改进以扩展卡尔曼为基础的迭代计算过程,实现协同估算模型的建立和SOC值与SOH值的数学迭代运算算法的可靠运行,提高了计算可靠性,还为不同应用场景下锂电池SOC与SOH估算模型的建立和SOC值与SOH值计算提供方法参考,计算简洁、适应性好、精度高。——四川帝威能源技术有限公司 | 西南科技大学

最新动态